Spatial-Temporal Contrasting for Fine-Grained Urban Flow InferenceDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 08 Dec 2023IEEE Trans. Big Data 2023Readers: Everyone
Abstract: Fine-grained urban flow inference (FUFI) problem aims to infer the fine-grained flow maps from coarse-grained ones, benefiting various smart-city applications by reducing electricity, maintenance, and operation costs. Existing models use techniques from image super-resolution and achieve good performance in FUFI. However, they often rely on supervised learning with a large amount of training data, and often lack generalization capability and face overfitting. We present a new solution: <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</u> patial- <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</u> emporal <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</u> ontrasting for Fine-Grained Urban <underline xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">F</u> low Inference (STCF). It consists of (i) two pre-training networks for spatial-temporal contrasting between flow maps; and (ii) one coupled fine-tuning network for fusing learned features. By attracting <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">spatial-temporally similar</i> flow maps while distancing dissimilar ones within the representation space, STCF enhances efficiency and performance. Comprehensive experiments on two large-scale, real-world urban flow datasets reveal that STCF reduces inference error by up to 13.5%, requiring significantly fewer data and model parameters than prior arts.
0 Replies

Loading