Generalized Group Data Attribution

ICLR 2025 Conference Submission12355 Authors

27 Sept 2024 (modified: 22 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: generalized, group, data attribution, efficiency, training data, influence, tracin, trak
TL;DR: We speed up existing data attribution methods by orders of magnitude while gracefully trading off attribution fidelity.
Abstract: Data Attribution (DA) methods quantify the influence of individual training data points on model outputs and have broad applications such as explainability, data selection, and noisy label identification. However, existing DA methods are often computationally intensive, limiting their applicability to large-scale machine learning models. To address this challenge, we introduce the Generalized Group Data Attribution (GGDA) framework, which computationally simplifies DA by attributing to groups of training points instead of individual ones. GGDA is a general framework that subsumes existing attribution methods and can be applied to new DA techniques as they emerge. It allows users to optimize the trade-off between efficiency and fidelity based on their needs. Our empirical results demonstrate that GGDA applied to popular DA methods such as Influence Functions, TracIn, and TRAK results in upto 10x-50x speedups over standard DA methods while gracefully trading off attribution fidelity. For downstream applications such as dataset pruning and noisy label identification, we demonstrate that GGDA significantly improves computational efficiency and maintains effectiveness, enabling practical applications in large-scale machine learning scenarios that were previously infeasible.
Supplementary Material: zip
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12355
Loading