Local Adaptive Illumination-Driven Input-Level Fusion for Infrared and Visible Object DetectionDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 10 May 2023Remote. Sens. 2023Readers: Everyone
Abstract: Remote sensing object detection based on the combination of infrared and visible images can effectively adapt to the around-the-clock and changeable illumination conditions. However, most of the existing infrared and visible object detection networks need two backbone networks to extract the features of two modalities, respectively. Compared with the single modality detection network, this greatly increases the amount of calculation, which limits its real-time processing on the vehicle and unmanned aerial vehicle (UAV) platforms. Therefore, this paper proposes a local adaptive illumination-driven input-level fusion module (LAIIFusion). The previous methods for illumination perception only focus on the global illumination, ignoring the local differences. In this regard, we design a new illumination perception submodule, and newly define the value of illumination. With more accurate area selection and label design, the module can more effectively perceive the scene illumination condition. In addition, aiming at the problem of incomplete alignment between infrared and visible images, a submodule is designed for the rapid estimation of slight shifts. The experimental results show that the single modality detection algorithm based on LAIIFusion can ensure a large improvement in accuracy with a small loss of speed. On the DroneVehicle dataset, our module combined with YOLOv5L could achieve the best performance.
0 Replies

Loading