Channel Selection for Test-Time Adaptation Under Distribution Shift

Published: 28 Oct 2023, Last Modified: 07 Dec 2023DistShift 2023 PosterEveryoneRevisionsBibTeX
Keywords: test-time adaptation, label distribution shift, covariate shift
TL;DR: Selective Channel Adaptation Enhances Model Robustness
Abstract: To ensure robustness and generalization to real-world scenarios, test-time adaptation has been recently studied as an approach to adjust models to a new data distribution during inference. Test-time batch normalization is a simple and popular method that achieved compelling performance on domain shift benchmarks by recalculating batch normalization statistics on test batches. However, in many practical applications this technique is vulnerable to label distribution shifts. We propose to tackle this challenge by only selectively adapting channels in a deep network, minimizing drastic adaptation that is sensitive to label shifts. We find that adapted models significantly improve the performance compared to the baseline models and counteract unknown label shifts.
Submission Number: 53