Dynamic value iteration networks for the planning of rapidly changing UAV swarms

Published: 01 Jan 2021, Last Modified: 17 Apr 2025Frontiers Inf. Technol. Electron. Eng. 2021EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: In an unmanned aerial vehicle ad-hoc network (UANET), sparse and rapidly mobile unmanned aerial vehicles (UAVs)/nodes can dynamically change the UANET topology. This may lead to UANET service performance issues. In this study, for planning rapidly changing UAV swarms, we propose a dynamic value iteration network (DVIN) model trained using the episodic Q-learning method with the connection information of UANETs to generate a state value spread function, which enables UAVs/nodes to adapt to novel physical locations. We then evaluate the performance of the DVIN model and compare it with the non-dominated sorting genetic algorithm II and the exhaustive method. Simulation results demonstrate that the proposed model significantly reduces the decision-making time for UAV/node path planning with a high average success rate.
Loading