Abstract: Privacy-preserving machine learning (PPML) via Secure Multi-party Computation (MPC) has gained momentum in the recent past. Assuming a minimal network of pair-wise private channels, we propose an efficient four-party PPML framework over rings ℤ2ℓ, FLASH, the first of its kind in the regime of PPML framework, that achieves the strongest security notion of Guaranteed Output Delivery (all parties obtain the output irrespective of adversary’s behaviour). The state of the art ML frameworks such as ABY3 by Mohassel et.al (ACM CCS’18) and SecureNN by Wagh et.al (PETS’19) operate in the setting of 3 parties with one malicious corruption but achieve the weaker security guarantee of abort. We demonstrate PPML with real-time efficiency, using the following custom-made tools that overcome the limitations of the aforementioned state-of-the-art– (a) dot product, which is independent of the vector size unlike the state-of-the-art ABY3, SecureNN and ASTRA by Chaudhari et.al (ACM CCSW’19), all of which have linear dependence on the vector size. (b) Truncation and MSB Extraction, which are constant round and free of circuits like Parallel Prefix Adder (PPA) and Ripple Carry Adder (RCA), unlike ABY3 which uses these circuits and has round complexity of the order of depth of these circuits. We then exhibit
0 Replies
Loading