Graph Neural Network BanditsDownload PDF

Published: 31 Oct 2022, Last Modified: 14 Dec 2022NeurIPS 2022 AcceptReaders: Everyone
Keywords: Bandit optimization, Kernels, Graph Neural Networks, Regret bounds
TL;DR: We propose a model for optimizing bandit problems on graphs, which leverages the natural structure embedded in the problem and uses a GNN to construct confidence sets. We support this model theoretically and empirically.
Abstract: We consider the bandit optimization problem with the reward function defined over graph-structured data. This problem has important applications in molecule design and drug discovery, where the reward is naturally invariant to graph permutations. The key challenges in this setting are scaling to large domains, and to graphs with many nodes. We resolve these challenges by embedding the permutation invariance into our model. In particular, we show that graph neural networks (GNNs) can be used to estimate the reward function, assuming it resides in the Reproducing Kernel Hilbert Space of a permutation-invariant additive kernel. By establishing a novel connection between such kernels and the graph neural tangent kernel (GNTK), we introduce the first GNN confidence bound and use it to design a phased-elimination algorithm with sublinear regret. Our regret bound depends on the GNTK's maximum information gain, which we also provide a bound for. Perhaps surprisingly, even though the reward function depends on all $N$ node features, our guarantees are independent of the number of graph nodes $N$. Empirically, our approach exhibits competitive performance and scales well on graph-structured domains.
Supplementary Material: pdf
13 Replies