Fourier Sliced-Wasserstein Embedding for Multisets and Measures

ICLR 2025 Conference Submission1401 Authors

17 Sept 2024 (modified: 14 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Sliced Wasserstein distance, Euclidean embedding, bi-Lipschitz, permutation invariance, multisets, optimal transport
TL;DR: Euclidean embedding for multisets and measures with injectivity and bi-Lipschitzness guarantees, based on the sliced Wasserstein distance
Abstract: We present the _Fourier Sliced Wasserstein (FSW) embedding_—a novel method to embed multisets and measures over $\mathbb{R}^d$ into Euclidean space. Our proposed embedding approximately preserves the sliced Wasserstein distance on distributions, thereby yielding geometrically meaningful representations that better capture the structure of the input. Moreover, it is injective on measures and _bi-Lipschitz_ on multisets—a significant advantage over prevalent embedding methods based on sum- or max-pooling, which are provably not bi-Lipschitz, and in many cases, not even injective. The required output dimension for these guarantees is near optimal: roughly $2 n d$, where $n$ is the maximal number of support points in the input. Conversely, we prove that it is _impossible_ to embed distributions over $\mathbb{R}^d$ into Euclidean space in a bi-Lipschitz manner. Thus, the metric properties of our embedding are, in a sense, the best achievable. Through numerical experiments, we demonstrate that our method yields superior representations of input multisets and offers practical advantage for learning on multiset data. Specifically, we show that (a) the FSW embedding induces significantly lower distortion on the space of multisets, compared to the leading method for computing sliced-Wasserstein-preserving embeddings; and (b) a simple combination of the FSW embedding and an MLP achieves state-of-the-art performance in learning the (non-sliced) Wasserstein distance.
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1401
Loading