Protein Sequence Domain Annotation using Language Models

24 Sept 2024 (modified: 26 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Protein homology benchmark, protein language models, protein sequence annotation, homology search, protein machine learning, protein function prediction
TL;DR: We extend protein language models to annotate domains in a protein sequence at the residue level with high sensitivity and specificity, and we introduce a rigorously-split multi-domain protein homology benchmark upon which we validate our results.
Abstract: Protein function inference relies on annotating protein domains via sequence similarity, often modeled through profile Hidden Markov Models (profile HMMs), which capture evolutionary diversity within related domains. However, profile HMMs make strong simplifying independence assumptions when modeling residues in a sequence. Here, we introduce PSALM (Protein Sequence Annotation using Language Models), a hierarchical approach that relaxes these assumptions and uses representations of protein sequences learned by protein language models to enable high-sensitivity, high-specificity residue-level protein sequence annotation. We also develop the Multi-Domain Protein Homology Benchmark (MDPH-Bench), a benchmark for protein sequence domain annotation, where training and test sequences have been rigorously split to share no similarity between any of their domains at a given threshold of sequence identity. Prior benchmarks, which split one domain family at a time, do not support methods for annotating multi-domain proteins, where training and test sequences need to have multiple domains from different families. We validate PSALM's performance on MDPH-Bench and highlight PSALM as a promising alternative to HMMER, a state-of-the-art profile HMM-based method, for protein sequence annotation.
Supplementary Material: zip
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3799
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview