GOMSF: Graph-Optimization Based Multi-Sensor Fusion for robust UAV Pose estimation

Published: 01 Jan 2018, Last Modified: 01 Mar 2025ICRA 2018EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Achieving accurate, high-rate pose estimates from proprioceptive and/or exteroceptive measurements is the first step in the development of navigation algorithms for agile mobile robots such as Unmanned Aerial Vehicles (UAVs). In this paper, we propose a decoupled Graph-Optimization based Multi-Sensor Fusion approach (GOMSF) that combines generic 6 Degree-of-Freedom (DoF) visual-inertial odometry poses and 3 DoF globally referenced positions to infer the global 6 DoF pose of the robot in real-time. Our approach casts the fusion as a real-time alignment problem between the local base frame of the visual-inertial odometry and the global base frame. The alignment transformation that relates these coordinate systems is continuously updated by optimizing a sliding window pose graph containing the most recent robot's states. We evaluate the presented pose estimation method on both simulated data and large outdoor experiments using a small UAV that is capable to run our system onboard. Results are compared against different state-of-the-art sensor fusion frameworks, revealing that the proposed approach is substantially more accurate than other decoupled fusion strategies. We also demonstrate comparable results in relation with a finely tuned Extended Kalman Filter that fuses visual, inertial and GPS measurements in a coupled way and show that our approach is generic enough to deal with different input sources in a straightforward manner. Video - https//youtu.be/GIZNSZ2soL8.
Loading