Distilling Reinforcement Learning Algorithms for In-Context Model-Based Planning

Published: 22 Jan 2025, Last Modified: 26 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: reinforcement learning, in-context learning
TL;DR: This work is the first to propose model-based planning for in-context RL that imitates a source RL algorithm, leveraging Transformers to simultaneously learn environment dynamics and improve policy in-context.
Abstract: Recent studies have shown that Transformers can perform in-context reinforcement learning (RL) by imitating existing RL algorithms, enabling sample-efficient adaptation to unseen tasks without parameter updates. However, these models also inherit the suboptimal behaviors of the RL algorithms they imitate. This issue primarily arises due to the gradual update rule employed by those algorithms. Model-based planning offers a promising solution to this limitation by allowing the models to simulate potential outcomes before taking action, providing an additional mechanism to deviate from the suboptimal behavior. Rather than learning a separate dynamics model, we propose Distillation for In-Context Planning (DICP), an in-context model-based RL framework where Transformers simultaneously learn environment dynamics and improve policy in-context. We evaluate DICP across a range of discrete and continuous environments, including Darkroom variants and Meta-World. Our results show that DICP achieves state-of-the-art performance while requiring significantly fewer environment interactions than baselines, which include both model-free counterparts and existing meta-RL methods.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2042
Loading