Abstract: In Community question answering (QA) sites, malicious users may provide deceptive answers to promote their products or services. It is important to identify and filter out these deceptive answers. In this paper, we first solve this problem with the traditional supervised learning methods. Two kinds of features, including textual and contextual features, are investigated for this task. We further propose to exploit the user relationships to identify the deceptive answers, based on the hypothesis that similar users will have similar behaviors to post deceptive or authentic answers. To measure the user similarity, we propose a new user preference graph based on the answer preference expressed by users, such as “helpful” voting and “best answer” selection. The user preference graph is incorporated into traditional supervised learning framework with the graph regularization technique. The experiment results demonstrate that the user preference graph can indeed help improve the performance of deceptive answer pre
0 Replies
Loading