Abstract: Non-communicable diseases (NCDs) are no longer just a problem for high-income countries, but they are also a problem that affects developing countries. Preventive medicine is definitely the key to combat NCDs; however, the cost of preventive programs is a critical issue affecting the popularization of these medicine programs in developing countries. In this study, we investigate predictive modeling for providing a low-cost preventive medicine program. In our two-year-long field study in Bangladesh, we collected the health checkup results of 15,075 subjects, the data of 6,607 prescriptions, and the follow-up examination results of 2,109 subjects. We address three prediction problems, namely subject risk prediction, drug recommendation, and future risk prediction, by using machine learning techniques; our multiple-classifier approach successfully reduced the costs of health checkups, a multi-task learning method provided accurate recommendation for specific types of drugs, and an active learning method achieved an efficient assignment of healthcare workers for the follow-up care of subjects.
0 Replies
Loading