Variational Continual LearningDownload PDF

15 Feb 2018 (modified: 14 Oct 2024)ICLR 2018 Conference Blind SubmissionReaders: Everyone
Abstract: This paper develops variational continual learning (VCL), a simple but general framework for continual learning that fuses online variational inference (VI) and recent advances in Monte Carlo VI for neural networks. The framework can successfully train both deep discriminative models and deep generative models in complex continual learning settings where existing tasks evolve over time and entirely new tasks emerge. Experimental results show that VCL outperforms state-of-the-art continual learning methods on a variety of tasks, avoiding catastrophic forgetting in a fully automatic way.
TL;DR: This paper develops a principled method for continual learning in deep models.
Keywords: continual learning, online variational inference
Code: [![Papers with Code](/images/pwc_icon.svg) 8 community implementations](https://paperswithcode.com/paper/?openreview=BkQqq0gRb)
Data: [Permuted MNIST](https://paperswithcode.com/dataset/permuted-mnist)
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 4 code implementations](https://www.catalyzex.com/paper/variational-continual-learning/code)
8 Replies

Loading