R-FCN-3000 at 30fps: Decoupling Detection and ClassificationDownload PDFOpen Website

2018 (modified: 10 Nov 2022)CVPR 2018Readers: Everyone
Abstract: We propose a modular approach towards large-scale real-time object detection by decoupling objectness detection and classification. We exploit the fact that many object classes are visually similar and share parts. Thus, a universal objectness detector can be learned for class-agnostic object detection followed by fine-grained classification using a (non)linear classifier. Our approach is a modification of the R-FCN architecture to learn shared filters for performing localization across different object classes. We trained a detector for 3000 object classes, called R-FCN-3000, that obtains an mAP of 34.9% on the ImageNet detection dataset. It outperforms YOLO-9000 by 18% while processing 30 images per second. We also show that the objectness learned by R-FCN-3000 generalizes to novel classes and the performance increases with the number of training object classes - supporting the hypothesis that it is possible to learn a universal objectness detector.
0 Replies

Loading