Abstract: We propose a new method for extracting pseudo-parallel sentences from a pair of large monolingual corpora, without relying on any document-level information. Our method first exploits word embeddings in order to efficiently evaluate trillions of candidate sentence pairs and then a classifier to find the most reliable ones. We report significant improvements in domain adaptation for statistical machine translation when using a translation model trained on the sentence pairs extracted from in-domain monolingual corpora.
0 Replies
Loading