Gradients as Features for Deep Representation Learning

Sep 25, 2019 Blind Submission readers: everyone Show Bibtex
  • TL;DR: Given a pre-trained model, we explored the per-sample gradients of the model parameters relative to a task-specific loss, and constructed a linear model that combines gradients of model parameters and the activation of the model.
  • Abstract: We address the challenging problem of deep representation learning--the efficient adaption of a pre-trained deep network to different tasks. Specifically, we propose to explore gradient-based features. These features are gradients of the model parameters with respect to a task-specific loss given an input sample. Our key innovation is the design of a linear model that incorporates both gradient features and the activation of the network. We show that our model provides a local linear approximation to a underlying deep model, and discuss important theoretical insight. Moreover, we present an efficient algorithm for the training and inference of our model without computing the actual gradients. Our method is evaluated across a number of representation learning tasks on several datasets and using different network architectures. We demonstrate strong results in all settings. And our results are well-aligned with our theoretical insight.
  • Keywords: representation learning, gradient features, deep learning
  • Original Pdf:  pdf
0 Replies