TequilaGAN: How To Easily Identify GAN SamplesDownload PDF

27 Sep 2018 (modified: 21 Dec 2018)ICLR 2019 Conference Blind SubmissionReaders: Everyone
  • Abstract: In this paper we show strategies to easily identify fake samples generated with the Generative Adversarial Network framework. One strategy is based on the statistical analysis and comparison of raw pixel values and features extracted from them. The other strategy learns formal specifications from the real data and shows that fake samples violate the specifications of the real data. We show that fake samples produced with GANs have a universal signature that can be used to identify fake samples. We provide results on MNIST, CIFAR10, music and speech data.
  • Keywords: Generative Adversarial Networks, Deep Learning
  • TL;DR: We show strategies to easily identify fake samples generated with the Generative Adversarial Network framework.
9 Replies

Loading