Adversarially Robust Neural Networks via Optimal Control: Bridging Robustness with Lyapunov StabilityDownload PDF

25 Sep 2019 (modified: 24 Dec 2019)ICLR 2020 Conference Blind SubmissionReaders: Everyone
  • Original Pdf: pdf
  • Keywords: adversarial defense, optimal control, Lyapunov stability
  • TL;DR: An adversarial defense method bridging robustness of deep neural nets with Lyapunov stability
  • Abstract: Deep neural networks are known to be vulnerable to adversarial perturbations. In this paper, we bridge adversarial robustness of neural nets with Lyapunov stability of dynamical systems. From this viewpoint, training neural nets is equivalent to finding an optimal control of the discrete dynamical system, which allows one to utilize methods of successive approximations, an optimal control algorithm based on Pontryagin's maximum principle, to train neural nets. This decoupled training method allows us to add constraints to the optimization, which makes the deep model more robust. The constrained optimization problem can be formulated as a semi-definite programming problem and hence can be solved efficiently. Experiments show that our method effectively improves deep model's adversarial robustness.
8 Replies