Speeding Up Neural Machine Translation Decoding by Shrinking Run-time VocabularyDownload PDFOpen Website

2017 (modified: 13 Nov 2022)ACL (2) 2017Readers: Everyone
Abstract: We speed up Neural Machine Translation (NMT) decoding by shrinking run-time target vocabulary. We experiment with two shrinking approaches: Locality Sensitive Hashing (LSH) and word alignments. Using the latter method, we get a 2x overall speed-up over a highly-optimized GPU implementation, without hurting BLEU. On certain low-resource language pairs, the same methods improve BLEU by 0.5 points. We also report a negative result for LSH on GPUs, due to relatively large overhead, though it was successful on CPUs. Compared with Locality Sensitive Hashing (LSH), decoding with word alignments is GPU-friendly, orthogonal to existing speedup methods and more robust across language pairs.
0 Replies

Loading