Newton-LESS: Sparsification without Trade-offs for the Sketched Newton UpdateDownload PDF

21 May 2021, 20:47 (edited 21 Jan 2022)NeurIPS 2021 SpotlightReaders: Everyone
  • Keywords: Second-order methods, Newton Sketch, Optimization, Random Matrix Theory, Least Squares
  • TL;DR: The Gaussian sketch can be drastically sparsified without affecting the convergence of Newton Sketch.
  • Abstract: In second-order optimization, a potential bottleneck can be computing the Hessian matrix of the optimized function at every iteration. Randomized sketching has emerged as a powerful technique for constructing estimates of the Hessian which can be used to perform approximate Newton steps. This involves multiplication by a random sketching matrix, which introduces a trade-off between the computational cost of sketching and the convergence rate of the optimization. A theoretically desirable but practically much too expensive choice is to use a dense Gaussian sketching matrix, which produces unbiased estimates of the exact Newton step and offers strong problem-independent convergence guarantees. We show that the Gaussian matrix can be drastically sparsified, substantially reducing the computational cost, without affecting its convergence properties in any way. This approach, called Newton-LESS, is based on a recently introduced sketching technique: LEverage Score Sparsified (LESS) embeddings. We prove that Newton-LESS enjoys nearly the same problem-independent local convergence rate as Gaussian embeddings for a large class of functions. In particular, this leads to a new state-of-the-art convergence result for an iterative least squares solver. Finally, we substantially extend LESS embeddings to include uniformly sparsified random sign matrices which can be implemented efficiently and perform well in numerical experiments.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
12 Replies

Loading