Keywords: Combinatorial optimization, Degenerate ground-state sampling, Metropolis-Hastings algorithm, Chaotic dynamics, Wishart planted ensemble
Abstract: We propose a general framework for a hybrid continuous-discrete algorithm that integrates continuous-time deterministic dynamics with Metropolis-Hastings (MH) steps to combine search dynamics that either preserve or break detailed balance. Our purpose is to study the non-equilibrium dynamics that leads to the ground state of rugged energy landscapes in this general setting. Our results show that MH-driven dynamics reach ``easy'' ground states more quickly, indicating a stronger bias toward these solutions in algorithms using reversible transition probabilities. To validate this, we construct a set of Ising problem instances with a controllable bias in the energy landscape that makes certain degenerate solutions more accessible than others. The constructed hybrid algorithm demonstrates significant improvements in convergence and ground-state sampling accuracy, achieving a 100x speedup on GPU compared to simulated annealing, making it well-suited for large-scale applications.
Supplementary Material: zip
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11258
Loading