Neighborhood Structure Configuration ModelsDownload PDFOpen Website

2022 (modified: 24 Apr 2023)CoRR 2022Readers: Everyone
Abstract: We develop a new method to efficiently sample synthetic networks that preserve the d-hop neighborhood structure of a given network for any given d. The proposed algorithm trades off the diversity in network samples against the depth of the neighborhood structure that is preserved. Our key innovation is to employ a colored Configuration Model with colors derived from iterations of the so-called Color Refinement algorithm. We prove that with increasing iterations the preserved structural information increases: the generated synthetic networks and the original network become more and more similar, and are eventually indistinguishable in terms of centrality measures such as PageRank, HITS, Katz centrality and eigenvector centrality. Our work enables to efficiently generate samples with a precisely controlled similarity to the original network, especially for large networks.
0 Replies

Loading