On Generalization Bounds for Neural Networks with Low Rank Layers

Published: 11 Feb 2025, Last Modified: 06 Mar 2025CPAL 2025 (Recent Spotlight Track)EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Gaussian Complexity, Low Rank, Neural Collapse
Abstract: While previous optimization results have suggested that deep neural networks tend to favor low-rank weight matrices, the implications of this inductive bias on generalization bounds remain underexplored. In this paper, we apply a chain rule for Gaussian complexity (Maurer, 2016) to analyze how low-rank layers in deep networks can prevent the accumulation of rank and dimensionality factors that typically multiply across layers. This approach yields generalization bounds for rank and spectral norm constrained networks. We compare our results to prior generalization bounds for deep networks, highlighting how deep networks with low-rank layers can achieve better generalization than those with full-rank layers. Additionally, we discuss how this framework provides new perspectives on the generalization capabilities of deep networks exhibiting neural collapse.
Submission Number: 51
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview