Absolute Neighbour Difference based Correlation Test for Detecting Heteroscedastic RelationshipsDownload PDF

21 May 2021, 20:41 (edited 26 Jan 2022)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: association measure, heteroscedasticity, nonfunctional dependence
  • TL;DR: a method for detecting heteroscedastic relationships
  • Abstract: It is a challenge to detect complicated data relationships thoroughly. Here, we propose a new statistical measure, named the absolute neighbour difference based neighbour correlation coefficient, to detect the associations between variables through examining the heteroscedasticity of the unpredictable variation of dependent variables. Different from previous studies, the new method concentrates on measuring nonfunctional relationships rather than functional or mixed associations. Either used alone or in combination with other measures, it enables not only a convenient test of heteroscedasticity, but also measuring functional and nonfunctional relationships separately that obviously leads to a deeper insight into the data associations. The method is concise and easy to implement that does not rely on explicitly estimating the regression residuals or the dependencies between variables so that it is not restrict to any kind of model assumption. The mechanisms of the correlation test are proved in theory and demonstrated with numerical analyses.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
  • Code: zip
14 Replies

Loading