Memory-assisted prompt editing to improve GPT-3 after deploymentDownload PDF

Published: 28 Mar 2022, Last Modified: 22 Oct 2023ACL 2022 Workshop CSRRReaders: Everyone
TL;DR: We present a method for improving the performance of GPT-3 without retraining using a memory of user feedback.
Abstract: Large LMs such as GPT-3 are powerful, but can commit mistakes that are obvious to humans. For example, GPT-3 would mistakenly interpret "What word is similar to good?" to mean a homonym, while the user intended a synonym. Our goal is to effectively correct such errors via user interactions with the system but without retraining, which will be prohibitively costly. We pair GPT-3 with a growing memory of recorded cases where the model misunderstood the user's intents, along with user feedback for clarification. Such a memory allows our system to produce enhanced prompts for any new query based on the user feedback for error correction on similar cases in the past. On four tasks (two lexical tasks, two advanced ethical reasoning tasks), we show how a (simulated) user can interactively teach a deployed GPT-3, substantially increasing its accuracy over the queries with different kinds of misunderstandings by the GPT-3. Our approach is a step towards the low-cost utility enhancement for very large pre-trained LMs. Anonymized code and data is available at
Published: No
Archival: No
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 6 code implementations](
0 Replies