Learning and Updating Node Embedding on Dynamic Heterogeneous Information NetworkOpen Website

2021 (modified: 16 Nov 2021)WSDM 2021Readers: Everyone
Abstract: Heterogeneous information networks consist of multiple types of edges and nodes, which have a strong ability to represent the rich semantics underpinning network structures. Recently, the dynamics of networks has been studied in many tasks such as social media analysis and recommender systems. However, existing methods mainly focus on the static networks or dynamic homogeneous networks, which are incapable or inefficient in modeling dynamic heterogeneous information networks. In this paper, we propose a method named Dynamic Heterogeneous Information Network Embedding (DyHINE), which can update embeddings when the network evolves. The method contains two key designs: (1) A dynamic time-series embedding module which employs a hierarchical attention mechanism to aggregate neighbor features and temporal random walks to capture dynamic interactions; (2) An online real-time updating module which efficiently updates the computed embeddings via a dynamic operator. Experiments on three real-world datasets demonstrate the effectiveness of our model compared with state-of-the-art methods on the task of temporal link prediction.
0 Replies

Loading