Referring Image Segmentation via Recurrent Refinement NetworksDownload PDFOpen Website

2018 (modified: 10 Nov 2022)CVPR 2018Readers: Everyone
Abstract: We address the problem of image segmentation from natural language descriptions. Existing deep learning-based methods encode image representations based on the output of the last convolutional layer. One general issue is that the resulting image representation lacks multi-scale semantics, which are key components in advanced segmentation systems. In this paper, we utilize the feature pyramids inherently existing in convolutional neural networks to capture the semantics at different scales. To produce suitable information flow through the path of feature hierarchy, we propose Recurrent Refinement Network (RRN) that takes pyramidal features as input to refine the segmentation mask progressively. Experimental results on four available datasets show that our approach outperforms multiple baselines and state-of-the-art.
0 Replies

Loading