Improving End-to-End Object Tracking Using Relational ReasoningDownload PDF

25 Sep 2019 (modified: 24 Dec 2019)ICLR 2020 Conference Blind SubmissionReaders: Everyone
  • Original Pdf: pdf
  • TL;DR: MOHART uses a self-attention mechanism to perform relational reasoning in multi-object tracking.
  • Abstract: Relational reasoning, the ability to model interactions and relations between objects, is valuable for robust multi-object tracking and pivotal for trajectory prediction. In this paper, we propose MOHART, a class-agnostic, end-to-end multi-object tracking and trajectory prediction algorithm, which explicitly accounts for permutation invariance in its relational reasoning. We explore a number of permutation invariant architectures and show that multi-headed self-attention outperforms the provided baselines and better accounts for complex physical interactions in a challenging toy experiment. We show on three real-world tracking datasets that adding relational reasoning capabilities in this way increases the tracking and trajectory prediction performance, particularly in the presence of ego-motion, occlusions, crowded scenes, and faulty sensor inputs. To the best of our knowledge, MOHART is the first fully end-to-end multi-object tracking from vision approach applied to real-world data reported in the literature.
  • Keywords: Relational Reasoning, Tracking, Intuitive Physics, Real-World Application, Permutation Invariance
10 Replies