Composition-based Multi-Relational Graph Convolutional NetworksDownload PDF

Published: 20 Dec 2019, Last Modified: 22 Oct 2023ICLR 2020 Conference Blind SubmissionReaders: Everyone
Keywords: Graph Convolutional Networks, Multi-relational Graphs, Knowledge Graph Embeddings, Link Prediction
TL;DR: A Composition-based Graph Convolutional framework for multi-relational graphs.
Abstract: Graph Convolutional Networks (GCNs) have recently been shown to be quite successful in modeling graph-structured data. However, the primary focus has been on handling simple undirected graphs. Multi-relational graphs are a more general and prevalent form of graphs where each edge has a label and direction associated with it. Most of the existing approaches to handle such graphs suffer from over-parameterization and are restricted to learning representations of nodes only. In this paper, we propose CompGCN, a novel Graph Convolutional framework which jointly embeds both nodes and relations in a relational graph. CompGCN leverages a variety of entity-relation composition operations from Knowledge Graph Embedding techniques and scales with the number of relations. It also generalizes several of the existing multi-relational GCN methods. We evaluate our proposed method on multiple tasks such as node classification, link prediction, and graph classification, and achieve demonstrably superior results. We make the source code of CompGCN available to foster reproducible research.
Code: https://github.com/malllabiisc/CompGCN
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 3 code implementations](https://www.catalyzex.com/paper/arxiv:1911.03082/code)
Original Pdf: pdf
7 Replies

Loading