NESTED LEARNING FOR MULTI-GRANULAR TASKS

Anonymous

Sep 25, 2019 ICLR 2020 Conference Blind Submission readers: everyone Show Bibtex
  • Keywords: Nested learning
  • TL;DR: DNNs can learn nested representations and output different quality of predictions with their respective confidence.
  • Abstract: Standard deep neural networks (DNNs) used for classification are trained in an end-to-end fashion for very specific tasks - object recognition, face identification, character recognition, etc. This specificity often leads to overconfident models that generalize poorly to samples that are not from the original training distribution. Moreover, they do not allow to leverage information from heterogeneously annotated data, where for example, labels may be provided with different levels of granularity. Finally, standard DNNs do not produce results with simultaneous different levels of confidence for different levels of detail, they are most commonly an all or nothing approach. To address these challenges, we introduce the problem of nested learning: how to obtain a hierarchical representation of the input such that a coarse label can be extracted first, and sequentially refine this representation to obtain successively refined predictions, all of them with the corresponding confidence. We explicitly enforce this behaviour by creating a sequence of nested information bottlenecks. Looking at the problem of nested learning from an in formation theory perspective, we design a network topology with two important properties. First, a sequence of low dimensional (nested) feature embeddings are enforced. Then we show how the explicit combination of nested outputs can improve both robustness and finer predictions. Experimental results on CIFAR-10, MNIST, and FASHION-MNIST demonstrate that nested learning outperforms the same network trained in the standard end-to-end fashion. Since the network can be naturally trained with mixed data labeled at different levels of nested details, we also study what is the most efficient way of annotating data, when a fixed training budget is given and the cost of labels increases with the levels in the nested hierarchy.
  • Code: https://github.com/nestedlearning2019
0 Replies

Loading