3D Snapshot: Invertible Embedding of 3D Neural Representations in a Single Image

Published: 01 Jan 2024, Last Modified: 14 May 2025IEEE Trans. Pattern Anal. Mach. Intell. 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: 3D neural rendering enables photo-realistic reconstruction of a specific scene by encoding discontinuous inputs into a neural representation. Despite the remarkable rendering results, the storage of network parameters is not transmission-friendly and not extendable to metaverse applications. In this paper, we propose an invertible neural rendering approach that enables generating an interactive 3D model from a single image (i.e., 3D Snapshot). Our idea is to distill a pre-trained neural rendering model (e.g., NeRF) into a visualizable image form that can then be easily inverted back to a neural network. To this end, we first present a neural image distillation method to optimize three neural planes for representing the original neural rendering model. However, this representation is noisy and visually meaningless. We thus propose a dynamic invertible neural network to embed this noisy representation into a plausible image representation of the scene. We demonstrate promising reconstruction quality quantitatively and qualitatively, by comparing to the original neural rendering model, as well as video-based invertible methods. On the other hand, our method can store dozens of NeRFs with a compact restoration network (5 MB), and embedding each 3D scene takes up only 160 KB of storage. More importantly, our approach is the first solution that allows embedding a neural rendering model into image representations, which enables applications like creating an interactive 3D model from a printed image in the metaverse.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview