Semi-supervised Learning for Nerve Segmentation in Corneal Confocal Microscope PhotographyOpen Website

Published: 2022, Last Modified: 06 Nov 2023MICCAI (4) 2022Readers: Everyone
Abstract: Corneal nerve fiber medical indicators are promising metrics for diagnosis of diabetic peripheral neuropathy. However, automatic nerve segmentation still faces the issues of insufficient data and expensive annotations. We propose a semi-supervised learning framework for CCM image segmentation. It includes self-supervised pre-training, supervised fine-tuning and self-training. The contrastive learning for pre-training pays more attention to global features and ignores local semantics, which is not friendly to the downstream segmentation task. Consequently, we adopt pre-training using masked image modeling as a proxy task on unlabeled images. After supervised fine-tuning, self-training is employed to make full use of unlabeled data. Experimental results show that our proposed method is effective and better than the supervised learning using nerve annotations with three-pixel-width dilation.
0 Replies

Loading