Non-Euclidean Self-Organizing MapsOpen Website

Published: 01 Jan 2022, Last Modified: 10 May 2023IJCAI 2022Readers: Everyone
Abstract: Self-Organizing Maps (SOMs, Kohonen networks) belong to neural network models of the unsupervised class. In this paper, we present the generalized setup for non-Euclidean SOMs. Most data analysts take it for granted to use some subregions of a flat space as their data model; however, by the assumption that the underlying geometry is non-Euclidean we obtain a new degree of freedom for the techniques that translate the similarities into spatial neighborhood relationships. We improve the traditional SOM algorithm by introducing topology-related extensions. Our proposition can be successfully applied to dimension reduction, clustering or finding similarities in big data (both hierarchical and non-hierarchical).
0 Replies

Loading