CausalTrace: A Neurosymbolic Causal Analysis Agent for Smart Manufacturing

Published: 2025, Last Modified: 21 Jan 2026CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Modern manufacturing environments demand not only accurate predictions but also interpretable insights to process anomalies, root causes, and potential interventions. Existing AI systems often function as isolated black boxes, lacking the seamless integration of prediction, explanation, and causal reasoning required for a unified decision-support solution. This fragmentation limits their trustworthiness and practical utility in high-stakes industrial environments. In this work, we present CausalTrace, a neurosymbolic causal analysis module integrated into the SmartPilot industrial CoPilot. CausalTrace performs data-driven causal analysis enriched by industrial ontologies and knowledge graphs, including advanced functions such as causal discovery, counterfactual reasoning, and root cause analysis (RCA). It supports real-time operator interaction and is designed to complement existing agents by offering transparent, explainable decision support. We conducted a comprehensive evaluation of CausalTrace using multiple causal assessment methods and the C3AN framework (i.e. Custom, Compact, Composite AI with Neurosymbolic Integration), which spans principles of robustness, intelligence, and trustworthiness. In an academic rocket assembly testbed, CausalTrace achieved substantial agreement with domain experts (ROUGE-1: 0.91 in ontology QA) and strong RCA performance (MAP@3: 94%, PR@2: 97%, MRR: 0.92, Jaccard: 0.92). It also attained 4.59/5 in the C3AN evaluation, demonstrating precision and reliability for live deployment.
Loading