Semantic Segmentation on VSPW Dataset through Aggregation of Transformer ModelsDownload PDFOpen Website

Published: 01 Jan 2021, Last Modified: 13 May 2023CoRR 2021Readers: Everyone
Abstract: Semantic segmentation is an important task in computer vision, from which some important usage scenarios are derived, such as autonomous driving, scene parsing, etc. Due to the emphasis on the task of video semantic segmentation, we participated in this competition. In this report, we briefly introduce the solutions of team 'BetterThing' for the ICCV2021 - Video Scene Parsing in the Wild Challenge. Transformer is used as the backbone for extracting video frame features, and the final result is the aggregation of the output of two Transformer models, SWIN and VOLO. This solution achieves 57.3% mIoU, which is ranked 3rd place in the Video Scene Parsing in the Wild Challenge.
0 Replies

Loading