Approximation Algorithms for 𝓁-Shortest Path and 𝓁-Group Steiner Tree

Published: 01 Jan 2024, Last Modified: 01 Oct 2024ICALP 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We present polylogarithmic approximation algorithms for variants of the Shortest Path, Group Steiner Tree, and Group ATSP problems with vector costs. In these problems, each edge e has a vector cost c_e ∈ ℝ_{≥0}^𝓁. For a feasible solution - a path, subtree, or tour (respectively) - we find the total vector cost of all the edges in the solution and then compute the 𝓁_p-norm of the obtained cost vector (we assume that p ≥ 1 is an integer). Our algorithms for series-parallel graphs run in polynomial time and those for arbitrary graphs run in quasi-polynomial time. To obtain our results, we introduce and use new flow-based Sum-of-Squares relaxations. We also obtain a number of hardness results.
Loading