Spherical Motion Dynamics: Learning Dynamics of Neural Network with Normalization, Weight Decay, and SGDDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Blind SubmissionReaders: Everyone
Keywords: Normalization, Weight decay, SGD, Momentum
Abstract: In this work, we comprehensively reveal the learning dynamics of neural network with normalization, weight decay (WD), and SGD (with momentum), named as Spherical Motion Dynamics (SMD). Most related works study SMD by focusing on "effective learning rate" in "equilibrium" condition, where weight norm remains unchanged. However, their discussions on why equilibrium condition can be reached in SMD is either absent or less convincing. Our work investigates SMD by directly exploring the cause of equilibrium condition. Specifically, 1) we introduce the assumptions that can lead to equilibrium condition in SMD, and prove that weight norm can converge at linear rate with given assumptions; 2) we propose "angular update" as a substitute for effective learning rate to measure the evolving of neural network in SMD, and prove angular update can also converge to its theoretical value at linear rate; 3) we verify our assumptions and theoretical results on various computer vision tasks including ImageNet and MSCOCO with standard settings. Experiment results show our theoretical findings agree well with empirical observations.
One-sentence Summary: Theoretical analysis on joint effect of normalization and weight decay.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Reviewed Version (pdf): https://openreview.net/references/pdf?id=TMiyX5VaKO
18 Replies

Loading