Optimizing evolutionary CSG tree extraction

Published: 01 Jan 2019, Last Modified: 08 May 2024GECCO 2019EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: The extraction of 3D models represented by Constructive Solid Geometry (CSG) trees from point clouds is a common problem in reverse engineering pipelines as used by Computer Aided Design (CAD) tools. We propose three independent enhancements on state-of-the-art Genetic Algorithms (GAs) for CSG tree extraction: (1) A deterministic point cloud filtering mechanism that significantly reduces the computational effort of objective function evaluations without loss of geometric precision, (2) a graph-based partitioning scheme that divides the problem domain in smaller parts that can be solved separately and thus in parallel and (3) a 2-level improvement procedure that combines a recursive CSG tree redundancy removal technique with a local search heuristic, which significantly improves GA running times. We show in an extensive evaluation that our optimized GA-based approach provides faster running times and scales better with problem size compared to state-of-the-art GA-based approaches.
Loading