AdvisorQA: Towards Helpful and Harmless Advice-seeking Question Answering with Collective Intelligence

Published: 01 Jan 2025, Last Modified: 21 Jul 2025NAACL (Long Papers) 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: As the integration of large language models into daily life is on the rise, there is still a lack of dataset for *advising on subjective and personal dilemmas*. To address this gap, we introduce AdvisorQA, which aims to improve LLMs’ capability to offer advice for deeply subjective concerns, utilizing the LifeProTips Reddit forum. This forum features a dynamic interaction where users post advice-seeking questions, receiving an average of 8.9 advice per query, with 164.2 upvotes from hundreds of users, embodying a *collective intelligence*. Therefore, we’ve completed a dataset encompassing daily life questions, diverse corresponding responses, and majority vote ranking, which we use to train a helpfulness metric. In baseline experiments, models aligned with AdvisorQA dataset demonstrated improved helpfulness through our automatic metric, as well as GPT-4 and human evaluations. Additionally, we expanded the independent evaluation axis to include harmlessness. AdvisorQA marks a significant leap in enhancing QA systems to provide subjective, helpful, and harmless advice, showcasing LLMs’ improved understanding of human subjectivity.
Loading