Pose-graph SLAM Using Multi-order Ultrasonic Echoes and Beamforming for Long-range Inspection Robots
Abstract: This paper presents a Graph-based Simultaneous Localization And Mapping (GraphSLAM) approach for a robotic system relying on the reflections of ultrasonic guided waves to enable long-range inspection tasks on plate-based metal structures. A measurement model that can leverage multi-order acoustic echoes is introduced for accurate localization, and beamforming is used for mapping the boundaries of individual metal panels. These two elements are subsequently integrated within a nonlinear least squares optimizer to solve the full offline SLAM problem. We experimentally evaluate the potential of this approach in a laboratory environment. We observe the improved localization accuracy of the multi-order echo model compared to a second model, from previous works, that relies solely on first-order echoes. We also show that the proposed approach can yield accurate SLAM results, hence showcasing the standalone capability of ultrasonic-based GraphSLAM for envisioned long-range inspection applications.
Loading