Bias Mitigation in Graph Diffusion Models

Published: 22 Jan 2025, Last Modified: 26 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Diffusion models, Graph learning, Bias analysis
Abstract: Most existing graph diffusion models have significant bias problems. We observe that the forward diffusion’s maximum perturbation distribution in most models deviates from the standard Gaussian distribution, while reverse sampling consistently starts from a standard Gaussian distribution, which results in a reverse-starting bias. Together with the inherent exposure bias of diffusion models, this results in degraded generation quality. This paper proposes a unified approach to mitigate both biases. To mitigate reverse-starting bias, we employ a newly designed Langevin sampling algorithm to align with the forward maximum perturbation distribution, establishing a new reverse-starting point. To address the exposure bias, we introduce a fraction correction mechanism based on a newly defined score difference. Our approach, which requires no network modifications, is validated across multiple models, datasets, and tasks, achieving state-of-the-art results.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1279
Loading