Neural Atoms: Propagating Long-range Interaction in Molecular Graphs through Efficient Communication Channel

Published: 16 Jan 2024, Last Modified: 21 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Long Range Interaction; Molecular Graph;
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Graph Neural Networks (GNNs) have been widely adopted for drug discovery with molecular graphs. Nevertheless, current GNNs mainly excel in leveraging short-range interactions (SRI) but struggle to capture long-range interactions (LRI), both of which are crucial for determining molecular properties. To tackle this issue, we propose a method to abstract the collective information of atomic groups into a few $\textit{Neural Atoms}$ by implicitly projecting the atoms of a molecular. Specifically, we explicitly exchange the information among neural atoms and project them back to the atoms’ representations as an enhancement. With this mechanism, neural atoms establish the communication channels among distant nodes, effectively reducing the interaction scope of arbitrary node pairs into a single hop. To provide an inspection of our method from a physical perspective, we reveal its connection to the traditional LRI calculation method, Ewald Summation. The Neural Atom can enhance GNNs to capture LRI by approximating the potential LRI of the molecular. We conduct extensive experiments on four long-range graph benchmarks, covering graph-level and link-level tasks on molecular graphs. We achieve up to a 27.32% and 38.27% improvement in the 2D and 3D scenarios, respectively. Empirically, our method can be equipped with an arbitrary GNN to help capture LRI. Code and datasets are publicly available in https://github.com/tmlr-group/NeuralAtom.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Submission Number: 3722
Loading