FF-LOGO: Cross-Modality Point Cloud Registration with Feature Filtering and Local to Global Optimization

Published: 01 Jan 2024, Last Modified: 10 Apr 2025ICRA 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Cross-modality point cloud registration is confronted with significant challenges due to inherent differences in modalities between sensors. To deal with this problem, we propose FF-LOGO: a cross-modality point cloud registration framework with Feature Filtering and LOcal-Global Optimization. The cross-modality feature correlation filtering module extracts geometric transformation-invariant features from cross-modality point clouds and achieves point selection by feature matching. We also introduce a cross-modality optimization process, including a local adaptive key region aggregation module and a global modality consistency fusion optimization module. Experimental results demonstrate that our two-stage optimization significantly improves the registration accuracy of the feature association and selection module. Our method achieves a substantial increase in recall rate compared to the current state-of-the-art methods on the 3DCSR dataset, improving from 40.59% to 75.74%. Our code will be available at https://github.com/wangmohan17/FFLOGO.
Loading