Straggler-Resilient Federated Learning: Leveraging the Interplay Between Statistical Accuracy and System Heterogeneity

Abstract: Federated learning is a novel paradigm that involves learning from data samples distributed across a large network of clients while the data remains local. It is, however, known that federated learning is prone to multiple system challenges including system heterogeneity where clients have different computation and communication capabilities. Such heterogeneity in clients’ computation speed has a negative effect on the scalability of federated learning algorithms and causes significant slow-down in their runtime due to slow devices (stragglers). In this paper, we propose <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FLANP</monospace> , a novel straggler-resilient federated learning meta-algorithm that incorporates statistical characteristics of the clients’ data to <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">adaptively</i> select the clients in order to speed up the learning procedure. The key idea of <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FLANP</monospace> is to start the training procedure with faster nodes and gradually involve the slower ones in the model training once the statistical accuracy of the current participating nodes’ data is reached, while the final model for each stage is used as a warm-start model for the next stage. Our theoretical results characterize the speedup provided by the meta-algorithm <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FLANP</monospace> in comparison to standard federated benchmarks for strongly convex losses and i.i.d. samples. For particular instances, <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FLANP</monospace> slashes the overall expected runtime by a factor of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathcal {O}(\ln (Ns))$ </tex-math></inline-formula> , where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$s$ </tex-math></inline-formula> denote the total number of nodes and the number of samples per node, respectively. In experiments, <monospace xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FLANP</monospace> demonstrates significant speedups in wall-clock time -up to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$6 \times $ </tex-math></inline-formula> – compared to standard federated learning benchmarks.
0 Replies
Loading