Synthesizing Trajectory Queries from Examples

Published: 01 Jan 2023, Last Modified: 13 May 2025CAV (1) 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Data scientists often need to write programs to process predictions of machine learning models, such as object detections and trajectories in video data. However, writing such queries can be challenging due to the fuzzy nature of real-world data; in particular, they often include real-valued parameters that must be tuned by hand. We propose a novel framework called Quivr that synthesizes trajectory queries matching a given set of examples. To efficiently synthesize parameters, we introduce a novel technique for pruning the parameter space and a novel quantitative semantics that makes this more efficient. We evaluate Quivr on a benchmark of 17 tasks, including several from prior work, and show both that it can synthesize accurate queries for each task and that our optimizations substantially reduce synthesis time.
Loading