Asynchronous Distributed Learning with Sparse Communications and IdentificationDownload PDFOpen Website

2018 (modified: 12 May 2023)CoRR 2018Readers: Everyone
Abstract: In distributed optimization for large-scale learning, a major performance limitation comes from the communications between the different entities. When computations are performed by workers on local data while a coordinator machine coordinates their updates to minimize a global loss, we present an asynchronous optimization algorithm that efficiently reduces the communications between the coordinator and workers. This reduction comes from a random sparsification of the local updates. We show that this algorithm converges linearly in the strongly convex case and also identifies optimal strongly sparse solutions. We further exploit this identification to propose an automatic dimension reduction, aptly sparsifying all exchanges between coordinator and workers.
0 Replies

Loading