OptiMind: Teaching LLMs to Think Like Optimization Experts

ICLR 2026 Conference Submission21944 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Optimization Modeling, Large Language Models, Mixed Integer Programming
Abstract: Mathematical programming -- the task of expressing operations and decision-making problems in precise mathematical language -- is fundamental across domains, yet remains a skill-intensive process requiring operations research expertise. Recent advances in large language models for complex reasoning have spurred interest in automating this task, translating natural language into executable optimization models. Current approaches, however, achieve limited accuracy, hindered by scarce and noisy training data without leveraging domain knowledge. In this work, we systematically integrate optimization expertise to improve formulation accuracy for mixed-integer linear programming, a key family of mathematical programs. Our approach first cleans training data through class-based error analysis to explicitly prevent common mistakes within each optimization class. We then develop multi-turn inference strategies that guide LLMs with class-specific error summaries and solver feedback, enabling iterative refinement. Experiments across multiple base LLMs demonstrate that combining cleaned data with domain-informed prompting and feedback improves formulation accuracy by 14 percentage points on average, enabling further progress toward robust LLM-assisted optimization formulation.
Supplementary Material: zip
Primary Area: optimization
Submission Number: 21944
Loading