Plugin estimators for selective classification with out-of-distribution detection

Published: 16 Jan 2024, Last Modified: 16 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Selective classification, Learning to reject, Abstention, OOD detection, SCOD, Loss functions, Plug-in estimators, Statistical consistency
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: Plugin estimators that are theoretically grounded, effective, and generalise approaches for selective classification and OOD detection
Abstract: Real-world classifiers can benefit from the option of abstaining from predicting on samples where they have low confidence. Such abstention is particularly useful on samples which are close to the learned decision boundary, or which are outliers with respect to the training sample. These settings have been the subject of extensive but disjoint study in the selective classification (SC) and out-of-distribution (OOD) detection literature. Recent work on selective classification with OOD detection (SCOD) has argued for the unified study of these problems; however, the formal underpinnings of this problem are still nascent, and existing techniques are heuristic in nature. In this paper, we propose new plugin estimators for SCOD that are theoretically grounded, effective, and generalise existing approaches from the SC and OOD detection literature. In the course of our analysis, we formally explicate how naïve use of existing SC and OOD detection baselines may be inadequate for SCOD. We empirically demonstrate that our approaches yields competitive SC and OOD detection trade-offs compared to common baselines.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: learning theory
Submission Number: 6357
Loading