Understanding new tasks through the lens of training data via exponential tiltingDownload PDF

Published: 01 Feb 2023, Last Modified: 14 Jul 2024ICLR 2023 posterReaders: Everyone
Keywords: Out-of-distribution generalization, model selection, subpopulation shift, concept drift
Abstract: Deploying machine learning models on new tasks is a major challenge due to differences in distributions of the train (source) data and the new (target) data. However, the training data likely captures some of the properties of the new task. We consider the problem of reweighing the training samples to gain insights into the distribution of the target task. Specifically, we formulate a distribution shift model based on the exponential tilt assumption and learn train data importance weights minimizing the KL divergence between labeled train and unlabeled target datasets. The learned train data weights can then be used for downstream tasks such as target performance evaluation, fine-tuning, and model selection. We demonstrate the efficacy of our method on Waterbirds and Breeds benchmarks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/understanding-new-tasks-through-the-lens-of/code)
11 Replies

Loading